- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Ansorge, Cedrick (1)
-
Bou-Zeid, Elie (1)
-
Gao, Xiang (1)
-
Katul, Gabriel G. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
High Reynolds number wall-bounded turbulent flows subject to buoyancy forces are fraught with complex dynamics originating from the interplay between shear generation of turbulence ( $$S$$ ) and its production or destruction by density gradients ( $$B$$ ). For horizontal walls, $$S$$ augments the energy budget of the streamwise fluctuations, while $$B$$ influences the energy contained in the vertical fluctuations. Yet, return to isotropy remains a tendency of such flows where pressure–strain interaction redistributes turbulent energy among all three velocity components and thus limits, but cannot fully eliminate, the anisotropy of the velocity fluctuations. A reduced model of this energy redistribution in the inertial (logarithmic) sublayer, with no tuneable constants, is introduced and tested against large eddy and direct numerical simulations under both stable ( $B<0$ ) and unstable ( $B>0$ ) conditions. The model links key transitions in turbulence statistics with flux Richardson number (at $$Ri_{f}=-B/S\approx$$ $-2$ , $-1$ and $-0.5$ ) to shifts in the direction of energy redistribution. Furthermore, when coupled to a linear Rotta-type closure, an extended version of the model can predict individual variance components, as well as the degree of turbulence anisotropy. The extended model indicates a regime transition under stable conditions when $$Ri_{f}$$ approaches $$Ri_{f,max}\approx +0.21$$ . Buoyant destruction $$B$$ increases with increasing stabilizing density gradients when $$Ri_{f}more » « less
An official website of the United States government
